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A Remark Concerning the Solution of the 
Dirichlet Problem by Finite Differences 

By Bernard Epstein 

In the classic paper [1] it is proven that the mesh-functions obtained by solving 
a discrete analogue of the Dirichlet problem converge, as the mesh-width approaches 
zero, to a harmonic function which solves the Dirichlet problem in a somewhat 
generalized sense. More precisely, let the function f be continuously differentiable 
in a bounded plane domain G and continuous in the closure G of G, and let the 
Dirichlet integral 

( 1 ) DD(f) f f [f2+ ] df dy 

be finite. Then the finite-difference method presented in the aforementioned paper 
is shown (under suitable assumptions concerning the smoothness of the boundary) 
to furnish a function u harmonic in G whose Dirichlet integral D(u) is finite (and 
not greater than D(f) ), and it is shown that u agrees with f on the boundary OG 
in the sense that for all sufficiently small values of e the inequality 

(2) ff (u _ f)2 dxdy 2 ye 

holds, where Se denotes the portion of G consisting of those points whose distance 
from OG is less than e and y denotes some positive number independent of e. The 
authors indicate, without supplying the details, that u agrees with f on 9G in the 
more elementary sense that the function u - f, initially defined only in a, becomes 
continuous in G if defined to vanish everywhere on 0G. In this brief note we present 
a proof of this fact, thus showing, without reference to any other method of treat- 
ing the Dirichlet problem, that the finite-difference method provides an existence 
proof for the "conventional" formulation of the Dirichlet problem as well as an 
effective procedure for computing the solution. 

The proof is accomplished by establishing two lemmas. The first of these is a 
strengthened version of the inequality (2). 

(3) LEMMA 1. lidx ff (u-f) dx dy = 0. 

Proof. First we establish (3) in the particular case that G is the unit disc, 
x2 + y2 < 1. Let v = u - f and let two points with polar coordinates (r, 0), 
(R., 0), r < R < 1, be selected. Then 

Ad 

(4) v(R,0) - v(r,0) = vp(p,0) dp = J vP(p,0)p112--.,12dp. 

Applying the Schwarz inequality and assuming that r > 4, we obtain 

(5) [v(R, 0) - v(r, 0)]2 < (f vp2p dp)(f p- dp) < 2(1 - r) v2p dp. 
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Integrating over 0 and setting e = 1 -r, we obtain 

(6) 1o [v(R,8) - v(r, O)]2 do 2e 1| vp2dx dy _ 2e]] [v 2 + v,2] dx dy 

< 2eD(v). 

Since D(f ) and D (u) exist, D(v) also exists, so the left side of (6) must approach 
{2 

zero with e. It then follows, by a familiar argument, that lim ] v2(r, 0) dO 
-0 *0 

exists. If this limit, which we denote by C, were positive, the inequality 
,2 v 

v2(r, 0) dO > IC 

would hold for all sufficiently small e. Integrating this inequality, we would obtain, 
in contradiction with (2), 

(7) ff v2(r, 5) rdr do > C / rdr= Ce(2-E) 

Having thus established that C = 0, we return to (6), let R 1 (keeping r mo- 
mentarily fixed), and thus obtain, by an obvious application of the triangle inequal- 
ity, 

J2w 

(8) v 2(r,0) do ? 2eD,(v) 

where D,(v) = ff 

[V.2 

+ VY2] dx dy. Integrating and noting that D,(v) is a de- 

creasing function of r(= 1 - e), we obtain 

(9) |v2 dxdy : 2eD,(v) f pdp = e2(2 -)D.(v). 

Since D,(v) approaches zero with e, (9) implies (3). 
For a more general domain with sufficiently smooth boundary it is readily 

seen that the same argument may be applied by introducing a coordinate system 
whose coordinate curves are the normals to the boundary and their orthogonal 
trajectories. 

Before stating the second lemma, we introduce the following terminology 
(cf. [2, p. 481]). A b-function (defined in a domain G) is one that is continuously 
differentiable in G and has compact support, i.e., there exists e > 0 such that the 
function vanishes throughout S. . A D-function, say v, is one which is continuously 
differentiable in G and can be approximated by b-functions in the sense that there 
exists a sequence { v.) of b-functions such that 

(10) limf (v-Vn)2 dx dy = O, lim D(v-vn) = 0. 

LEMMA 2. v(= u -f) is a D-function. 
Proof. As in the proof of the previous lemma, it suffices to confine attention 

to the case that G is the unit disc. For each positive integer n we define the func- 
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tions gn and h, as follows: 

1 O < r 1- 
n 

( 11) gn Cos O2 nor (1- r- 1- _ r _ 1 -21 hn = 1 -agn . 

l ? ~ ~ r > 1 - 

2n 

Then the functions Vn = vgn are obviously b-functions, and we establish the two 
parts of (10) by the following arguments. 

f(v - Vn)2 dx dy = ffG(vhn)2 dx dy 

(a) 
= ff (vhn)2 dx dy - f V2 dx dy -> 0; 

D(v - v) = D(vhn) = D1ln(vhn) < D1ln(vhn) 

(b) + 
ff [vx hn -vhn ,)2 + (vi hn - vhnY)2] dx dy 

= 2 ff [hn2(vx + v2) + v2(hnx + hy)] dx dy. 
1 /71 

Since hn2 < 1 and h 2x + h 2 < n27r2we obtain 

D(v - vn) < 2Dl/n(v) + 2nY IL v2 dx dy. 
s1 In 

Di1n(v) approaches zero with increasing n, and the same is true of the remaining 
term, by Lemma 1. Thus the present lemma is proven. 

The desired result concerning the boundary behavior of u now follows imme- 
diately from the following theorem (which is a particular case of a theorem proven 
in [2, p. 495-7]): Let u be harmonic in a bounded domain G, let f be continuous in 
G, let D(u) and D(f) be finite, and let u - f be a Do-function. Then u - f ap- 
proaches zero at the boundary if the latter satisfies certain mild conditions. 

Petrovsky [3] has presented a proof that the boundary values are assumed. His 
proof, which also appears in [4, p. 186 if.], does not make use of (2) at all. How- 
ever, the Petrovsky proof does not appear to extend readily to more general elliptic 
equations, whereas the proof of (2) presented in [1] and the argument presented 
here can be suitably modified so as to apply to other equations. 
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